Schwerpunkte der Mathematik-Nachhilfe von der Grundschule bis zum Abitur bzw. Fachabitur, einschließlich Vorbereitung auf die Mathematik-Abschlussprüfung der Realschule und die Mathematik-Abiturprüfung im Mathematik-Grundkurs und Mathematik-Leistungskurs sowie das Mathematik-Fachabitur
- Verbesserung der Fertigkeiten im Kopfrechnen auf unterschiedlichem Niveau
- Entwicklung eines besseren Zahlenverständnisses und eines sicheren Umgangs mit Zahlen, vor allem im Mathematik-Nachhilfeunterricht für die 1. Klasse bis 4. Klasse der Grundschule
- mündliches und schriftliches Training der Grundrechenarten – Addition, Subtraktion, Multiplikation und Division
- Vergleich von Zahlen und Bildung des arithmetischen Mittels (Durchschnittsberechnung)
- Vorrang der Punktrechnung vor der Strichrechnung (Mathematik-Nachhilfe für die Grundschule)
- Rechnen mit Klammern
- mathematische Einheiten und deren Umrechnung, z.B. Länge, Fläche, Raum, Winkel
- Berechnung von Längen, Flächen, Räumen, Körpern u.a. geometrischer Figuren, z.B. Geraden, Dreiecke, Vierrecke, Kreise, Quadrate, Quader, Pyramiden, Kegel …
- darstellende Geometrie
- graphische Darstellung mathematischer Zusammenhänge in Form von Diagrammen, Koordinaten, Tabellen etc. (insbesondere in der Mathematik-Nachhilfe für die 5. Klasse bis 10. Klasse der Mittelschule und des Gymnasiums)
- natürliche Zahlen, gebrochene Zahlen (auch Dezimalbrüche), rationale Zahlen, reelle Zahlen (besonders in der Mathe-Nachhilfe für die 5. Klasse bis 7. Klasse)
- Grundbegriffe der Mengenlehre
- Funktionen, Gleichungen und Ungleichungen mit Variablen
- Proportionalität, Prozentrechnung, lineare Funktionen, quadratische Funktionen und quadratische Gleichungen, Potenzfunktionen, Winkelfunktionen (Sinus, Kosinus …), Logarithmusfunktionen, Exponentialfunktionen, trigonometrische Berechnungen …
- sicherer Umgang mit mathematischen Symbolen und Modellen
- geometrische Strecken- und Winkelmessungen, Bewegungen, Ähnlichkeit und Kongruenz
- Konstruktionen und sicherer Umgang mit Zirkel, Lineal und Schablonen
- effektive Nutzung des Taschenrechners
- Prüfung und Beweis mathematischer Aussagen, Beweisverfahren (u.a. vollständige Induktion)
- Lösen von Sach- und Textaufgaben
- numerische Wiedergabe praktischer Sachverhalte
- Formulierung naturwissenschaftlicher Zusammenhänge, insbesondere aus Physik und Chemie, in mathematischen Gleichungen
- komplexe Gleichungssysteme mit mehreren Unbekannten
- Fehlerrechnung
- Zinsrechnung
- Umgang mit mathematischen Tabellen
- rationale und nichtrationale Funktionen, Wurzelgleichungen und goniometrische Gleichungen (vor allem Mathe-Nachhilfe für die 9. Klasse bis 11. Klasse)
- Differentialrechnung und Integralrechnung – Grenzwerte, Stetigkeit und Ableitung von Funktionen, Verhalten von Funktionen, Kurvendiskussionen, Extremwertaufgaben und Integrationsregeln (insbesondere im Mathematik-Nachhilfeunterricht für die 11. Klasse und 12. Klasse der gymnasialen Oberstufe)
- Vektorrechnung – Verschiebungen, analytische Geometrie, Vektorprodukt etc.
- Kombinatorik (Mathematik-Nachhilfe – Abiturstufe)
- Wahrscheinlichkeitsrechnung (im Nachhilfeunterricht für die gymnasiale Oberstufe)
- Statistik (Mathematik-Nachhilfe für die Abiturstufe)
- Matrizen (Abiturstufe)
- Entwicklung der Fähigkeiten zum selbstständigen Lösen mathematischer und naturwissenschaftlicher Probleme, ggf. unter Verwendung von Nachschlagewerken und Hilfsmitteln, vor allem im Hinblick auf die Studienvorbereitung bzw. die praktische Anwendung mathematischer Kenntnisse im zukünftigen Beruf